

NETBULA, LLC
PowerRPC Client/Server Development Tool

 Power RPC
Quick Reference

P O W E R R P C C L I E N T / S E R V E R D E V E L O P M E N T

PowerRPC Quick Reference

 Netbula, LLC
http://www.netbula.com

Table of Contents
HOW IT WORKS..................................... 3

PRIMITIVE TYPES................................. 7

POINTERS.. 7

STRUCT .. 8

ARRAY.. 8

POINTER ARRAY................................... 9

TYPEDEF.. 10

DISCRIMINATED UNIONS................. 11

MULTI-DIMENSIONAL ARRAYS 12

SYNTAX.. 13

INTERFACE DECLARATION BY
EXAMPLE .. 13

RPC FUNCTION DECLARATION 15

PROPERTY DEFINITIONS 15

THE PROTOCOL USED BY
CLIENT/SERVER FOR
COMMUNICATIONS. OPTIONS ARE
.. 16

NO DEFAULT VALUE FOR THIS
PROPERTY. ... 16

FUNCTIONS IN THE GENERATED
CODE... 18

XDR FUNCTIONS 18
CLIENT SIDE FUNCTIONS......................... 19
SERVER FUNCTIONS................................ 20

VOID PW_SERV_INIT(VOID).....................22
VOID
PW_SERV_MAINLOOP(SVCXPRT*TCPSVC,
SVCXPRT*UDPSVC, INT DOFORK, INT
EXITIDLE)..22
VOID PW_SERV_ONCE(STRUCT TIMEVAL
*TIMEOUT)..23
VOID PW_SERV_ASYNC_ENABLE(VOID) ..23
VOID PW_SERV_ASYNC_DISABLE(VOID) .23
VOID PW_FREE_REFERENCE(XDRPROC_T
XDRFUNC, VOID* PTR, U_INT SIZE)..........23
VOID PW_SERIALIZE(FILE*FP, XDRPROC_T
XDRFUNC, VOID* PDATA, ENUM XDR_OP OP)
...24

A FILE SERVER25

DESIGN OF INTERFACE25
SERVER IMPLEMENTATION......................27
THE CLIENT...28

A TALK PROGRAM..............................28

DESIGN OF THE INTERFACE29
IMPLEMENTATION...................................29
USAGE ..31

ASYNCHRONOUS RPC........................32

OTHER SAMPLE PROGRAMS...........34

INDEX

Introduction
o emote Procedure Call (RPC) is a powerful mechanism for client/server
and distributed computing in general.

PowerRPC is a rapid RPC development tool that helps unleash the full

power of RPC programming. It makes arbitrary C functions callable across
process boundaries over a TCP/IP network, and it is very easy to learn and use.

PowerRPC mainly consists of the powerRPC IDL compiler and the powerRPC
runtime time library. Given an interface description in a form almost identical to C
function declarations, the IDL compiler generates client and server stub code - the
code handles the networking and server dispatching. Unlike the original ONC
RPC, PowerRPC handles generic multi-argument C functions. The arguments of
the C functions can be of IN, OUT or INOUT directions, and they can be any
complex C data types such as structs, linked list, unions, multi-dimensional arrays,
etc. The problem of transporting data between different architectures are solved
by the XDR mechanism, this way, RPC clients and servers live in any platform.

Since one of the main design goals of powerRPC is to bring the power of RPC
programming to general C/C++ programmers, it is made very easy to use. In
powerRPC, the programmer is insulated from network programming at TCP/IP
level and the ONC RPC level. The programmer only needs to provide an interface
description and their server implementation. A programmer without any prior
experience of network and RPC programming experience can write sophisticated,
robust and efficient powerRPC programs in a very short time.

PowerRPC is also designed to provide elegant solutions to common problems in
client/server computing. For example, it allows you to create multi-tasking or multi-
threading servers, it supports asynchronous server... and you can enable these features
simply by specifying properties in the interface description.

How it works
 One of the main components of powerRPC is its IDL compiler. Given an
interface definition, powerRPC generates the RPC stub code for network

Chapter

1
R

 4

transport and server dispatch. An interface definition language (IDL) file declares
the C functions provided by an RPC interface and the data types used by these
functions as arguments or return values. An example of a the IDL file looks like
the quote RPC interface shown below, whose purpose is to allow a client (the
RPC caller) to get the stock quotes for a given ticker symbol,

 % cat quote.idl

 typedef struct {
 char Ticker[8];
 double Low;
 double High;
 double Close;
 } stkQuote;

 interface quote {
 int getQuote(inout stkQuote * pQuote);
 } 0x12345;

There is nothing special about the typedef--it is pure C. The powerRPC keyword
interface followed by identifier quote starts the declaration of an RPC interface,
which encloses a set of function declarations in curly braces. Here we have only
one function, getQuote(), which takes a pointer to stkQuote. The inout
keyword specifies the direction of the argument pQuote. In this case, the
argument is used for both input and output - the client sends the struct over to the
server, the server uses the Ticker field to find quotes, and sends them back. The
integer 0x12345 is just an identification number for this RPC interface, which
maps to the program number in ONC RPC.

We compile the interface with the command,

 % powerRPC quote.idl

Six files will be generated,

Filename Purpose
quote.h Header to be included by the client and server.

quote_svc.c Server stub, it calls the server implementation of
getQuote().

quote_imp.c Template for the server implementation, programmer
needs to fill in the details.

quote_cln.c
Client stub, it defines the getQuote() function for
the client, this function is the interface to the
server's getQuote() function.

quote_xdr.c XDR routines used by both the client and server to
encode and decode the arguments and return values.

quote.mak A makefile template.

Middleware

 5

Our lucky programmer now needs to provide the getQuote() function for the
server, the IDL compiler generates a file named quote_impl.c which contains the
template for the server code. We now edit this file and add in the details, it look
like this,

 %cat quote_impl.c

 #include "quote.h"

 int getQuote(stkQuote * quote) {

 /* let's just return some good value. */

 quote->Low = 30;
 quote->High = 35;
 quote->Close = 34;
 return 0;
 }

Now, we can compile and run the server ,

 % cc -o quoteserv quote_svc.c quote_xdr.c quote_impl.c -
lpwrpc
 % quoteserv

The server starts up and announces its registration with the portmapper (or
rpcbind on SYSVR4). Now the getQuote() function is “exposed” to the network
and is callable by an authenticated client.

We now write a simple client program, in file quote_call.c,

 % cat quote_call.c

 #include "quote.h"
 int main(int argc, char**argv)
 {
 stkQuote q;
 if(quote_bind(argv[1], 0,0,0)==NULL)
 {
 printf("Fail connect to server on host %s\n", argv[1]);
 exit(1);
 }
 strcpy(q.Ticker, argv[2]);

 /* make the RPC call */
 if(getQuote(&q) <0)
 {
 printf("Fail get quote for %s\n", q.Ticker);
 }
 else {
 printf("Quote for %s (LOW, HIGH, CLOSE):\n", q.Tikcer);

 6

 printf(" %f %f %f\n", q.Low, q.High, q.Close);
 }
 quote_unbind(0);
 }

We used three functions produced by powerRPC, quote_bind() binds the RPC
connection to the server, quote_unbind() close the RPC connection, and
getQuote() calls the RPC function.

We compile the quote client,

 % cc -o quoteclnt quote_cln.c quote_xdr.c quote_call.c

Suppose quoteserv is running on host eagle, we run the client as follows

 % quoteclnt eagle <ANY TICKER>

You will see the set of values printed on client's terminal.

Let's summarize the steps in powerRPC programming,

1. Create an interface definition (the IDL file), which declares RPC functions
and related types.

2. Run powerRPC to generate client/server stubs from the IDL file
3. Code the server implementation of the RPC functions declared in the

interface.
4. Code the client, which calls the RPC functions. With the three steps above,

the server is complete. Before making RPC calls, a client needs just one
additional step: call the <interface>_bind() function to bind to a server.

Starting from next chapter, we will learn more about powerRPC IDL.
Next: Type declarations in the

 7

Type declarations in the
powerRPC IDL

he powerRPC IDL is an extension of the C type and function declarations.
The IDL is made as close to C as possible, therefore almost every valid C
declaration is also a valid powerRPC declaration, with a few exceptions.
Function pointer is such an exception, it is an error to declare a pointer to

function as a member of struct or union in powerRPC, for obvious reasons.

Primitive types
You can use any primitive types, such as
 char, short, int, long, float, double, enum
in the IDL. When applicable, you can also use the unsigned specifier before the
types.

However, currently, powerRPC does not support non-standard types such as long
long, long double. Anyway, you should avoid using such types for portability.

Pointers
In powerRPC IDL, a declaration of the form
 T * ptr;
is always taken as a pointer to a single object of type T. To declare “pointer
arrays", please refer to page 8.

Example:
 struct link_t {
 struct link_t * next;
 double val;
 };
struct link_t can be used as a singly linked list of doubles.

Chapter

2
PowerRPC IDL
closely resembles
the C function
declaration.

T

 8

The powerRPC generated XDR function will recursively chase the pointers when
encoding/decoding an object. For the above declaration, when next is not NULL,
the generated function xdr_link_t() will be called for *next. This implies that we
can not use self-referencing types such as double linked lists as RPC arguments,
since the pointers form a circle, which would cause infinite recursion in the XDR
function.

When use a pointer as an RPC argument, you must make sure that it is properly
initialized. Otherwise, either a memory fault or a memory leak may occur.
Suppose you have an RPC function foo(out int * ptr) (where the out keyword
declares that the argument is used to receive result from server), the following
lines of code
 int * pi; // not initialized
 foo(pi);
will probably cause a fault since a dangling reference is passed, while this line of
code

 foo(0); // passed a NUL pointer
would results in a memory leak, even if the server implementation of foo() does
not use the ptr argument at all.

struct
structs are very important in C, since it is the only way to support aggregated
types. PowerRPC IDL allows structs that consists of data fields of any types, such
as primitive types, typedefs, pointers, arrays, structs, etc.

Array
In making an RPC, the function arguments are sent to the server, which resides in
different address space, usually on a remote host. We want to minimize the data
transfered to reduce the overhead. When the data to be sent is an array, we should
only send those needed elements. In powerRPC, when an argument is declared as
char msg[1024] with a constant 1024 as the array length, exactly 1024 characters
will be sent to/from the server. To tell powerRPC to be more efficient, we can
define the size attribute for a fixed array, as shown below,

 struct msg_t
 {
 int len;
 char msg[size=len, 1024];
 };
where we specify that the number of needed elements in array msg is len.

 9

Or even this,
 struct msg_t2
 {
 char msg[size = strlen(msg)+1, 1024];
 };
The size attribute is used only during the code generation of the XDR routines,
the generated header file contains the C declaration with the size = expression
part stripped out.

One important restriction on the expression used for the size attribute: one can
not use global variables. This is because the server and client use the XDR
routines symmetrically, a variable in one address space is different from one in
another address space.

PowerRPC does not recognize declaration of extern variables or functions, and it
does not check the type of the expression used for the size attribute.

pointer array
 The C declaration of a pointer is ambiguous. A char * means (at least) two
different things,

1. a pointer to a single char,
2. a pointer to the first element of an array.

A C programmer, had decided the meaning in his mind when he wrote the code.
However, powerRPC (or a maintainer of other people's code too?) is not able to
guess this implicit meaning. The C programmer usually writes a comment such as
“this is a null terminated string”, so the reader of his code knows what a char*
really means. We must do the same thing for powerRPC.

In powerRPC IDL, a simple T* will always be interpreted as a pointer to a single
object of type T. To declare a ``pointer array", you must used the following syntax,

 T [size=expression, maxsize=expression] ptr;

Notice the position of `[size_attrib] is before the identifier ptr. The C declaration
corresponding to the above is simply T *ptr, obtained by replacing the [size_attrib]
before the identifier ptr with a *.

We have mentioned about the size attributes for fixed arrays. For ``pointer array",
we should have an additional attribute, maxsize to specify the maximum number
of elements, using the maxsize = expression syntax within the subscript
operator []. You may also specify the maximum size with a integer constant,
without using the maxsize = expression syntax.

 10

Example:
struct msg_t2 {
 int maxlen;
 char [size = (msg? strlen(msg)+1 : 0), maxsize=maxlen] msg;
 char [256] msg2;
 char msg3[256];
};

Notice that we did not specify the size attribute for msg2, in this case powerRPC
will take the maxsize, which is 256, as the size. However, you must specify at least
one of the sizes for an array, otherwise an error will be reported by powerRPC.

The C declaration of the above is
 struct msg_t2 {
 int maxlen;
 char * msg;
 char * msg2;
 char msg3[256];
 };

It is your responsibility of to make sure that msg and msg2 are initialized and
pointing to allocated memory before using it as RPC arguments. You must be very
careful, or a memory fault will occur, for example, the declaration claims member
msg2 is an array of 256 elements, so powerRPC will try to faithfully deliver 256
chars. If msg2 were a NULL pointer, a fault would be inevitable.

Typedef
Typedefs are very useful in powerRPC. A generated XDR function for type T is
always of the following prototype,
 int xdr_T(XDR*, T* pT);
i.e., it takes only two arguments, the first is a pointer to an XDR object, and the
second is the pointer to the object(of type T) to be marshalled. To encapsulate the
size information of an array in an XDR function, we need to use typedef.

For example, we can define an array of 512 chars,
 typedef char c_arr512[512];

To define a C string (char*) with a maximum length of 1023,
 typedef char [size = strlen(*this)+1, 1024] str1024;
here we used the powerRPC keyword this, which can be used in a type
declaration (typedef, struct or union) to signify the pointer pT passed to the XDR
function of the typedef.

The corresponding C declaration for str1024 is simply char *, however, the
elaborate size specification above actually defines str1024 as a C string. In

 11

powerRPC, instead of being provided a fixed number of predefined types such as
string8 (meaning C string), you can use its expressive IDL to defined your own
types. Suppose you need to declare an array of long integers ending with a zero,
you can do it yourself as follows,
 typedef long [size =strlen32(*this)+1, 1024] string32;
provided that you define the strlen32() function somewhere like this:
 int strlen32(long*la) {
 int i;
 for(i=0; la[i]; i++);
 return i;
 }

Discriminated unions
Union is a space saver construct.

A discriminated union must be declared in a struct, and must use an integral
expression as the discriminator. The C switch statement syntax is used to select
from the choices, as shown in this example,
 struct primitive_t
 {
 char choice;
 union switch(choice)
 {
 case 'i': int ival;
 case 'c': char cval;
 case 'd': double dval;
 } value;
 };

A discriminated union must be defined without a tag name, to prevent it from
being used outside of the struct.

The corresponding C declaration of the above is,
 struct primitive_t
 {
 char choice;
 union
 {
 int ival;
 char cval;
 double dval;
 } value;
 };

To use the type primitive_t, you must assign the choice field, and the
corresponding union member, as shown in the following example,
 struct primitive_t aprim;
 /* we are using it as a double */
 aprim.choice = 'd';

 12

 aprim.value.dval = 9.9 ;

 /* now we can use aprim in an RPC */

Sometime we may want to use a union to represent optional data. To do this, we
simply set the discriminator to a case not listed in the ``switch statement". Thus, if
we set the choice to a undefined case,
 aprim.choice = -1;

No data will be transferred when aprim is later used in an RPC argument.
A usual C union declaration is also allowed. However, it will be treated as opaque
data in powerRPC, that is the raw bytes (non-portable) of the union will be
transferred across the network.

Multi-dimensional arrays
Multi-dimensional arrays or pointer arrays can be used in powerRPC, however,
only the size of the first dimension can be a variable. To use multi-dimensional
arrays with variable sizes at second dimension and above, you can use typedefs.

For example, we can use the str1024 to define an array of strings.
 struct string_array
 {
 int len;
 str1024 [size=len] strArray;
 };

Next: Interface declarations in the

Copyright (C) Netbula LLC, 1996－2005

 13

Interface declarations in
the powerRPC IDL

e have seen a simple example of the interface declaration in Chapter 1.
Now that we have learned how to declare types, what remains is
simple: to declare RPC functions, using the declared types in function
signatures or as return types.

Syntax
A powerRPC IDL files may contain the following components,

• C preprocessor pseudo-ops, such as #include. PowerRPC will pass the
IDL file through CPP before performing its own parsing. It also defines a
macro POWERRPC_COMPILE by itself when invoking CPP.

• Type declarations, as described in chapter 1.
• A single interface declaration that specifies the RPC functions. This must

appear after all type declarations.
• Copy-out statements. These are arbitrary text followed by a leading %.

They are copied AS IS to the header file generated by powerRPC. Those
appear before the interface declaration are prepended to the header file,
and those appear after are appended to the header file.

Interface declaration by example
An interface declaration consists of property definitions and functions
declarations.

Chapter

3

W

 14

The following is an example,

1 interface test {
2 property TRANSPORT_PROTOCOL = tcp;
3 int my_read(
4 out char [maxsize=maxlen, size=return>0?return:0] buf,
5 int maxlen
6)
7 {
8 property FORK_ON_CALL = true;
10 };
12 int my_write(in char [size = len] buf, int len);
13 } = 12221;

At line 1, the keyword interface followed by the identifier test announces our
RPC. At line 2, we set the TRANSPORT PROTOCOL of the RPC to be TCP.

Properties are optional settings that customize RPCes on the client or server side.
If the TRANSPORT_PROTOCOL property is not set, the default is
tcp_and_udp, meaning the client can connect to the server via both protocols.

From line 3 to line 10, we declared an RPC function my_read(char* buf, int
maxlen), the out keyword on line 4 says that the buf is used for output only, and
its maximum size is determined by the second argument maxlen, its size is
determined by the expression (return > 0? return:0), where the return keyword
is the return value of the RPC function.

Obviously, return can ONLY be used in size expressions for out arguments. The
FORK_ON_CALL property says that the RPC server will fork a child upon
receiving the my_read() call, so the parent can handle other requests.

 Line 12 declares another RPC function int my_write(char* buf, int len), in this
case, the buf is used for input only, the size of buf is determined by the len
argument. my_write() does not have additional properties. While my_read()
function has set the FORK_ON_CALL property, the server will not fork a child
to handle it.

Line 13 specifies that the test RPC is identified by the program number 12221.
The program number is a long integer used to identify the RPC program, and it
should not be in conflict with other RPC programs.

PowerRPC IDL allows you to specify the direction of the argument as one of in,
out and inout, the default direction is in. You can use an argument in the size
expression for an array argument.

 15

The property definitions have scopes. When a property is defined in the scope of
the interface, it is shared by all RPC functions. However, a function can redefines
a particular property, and overrides the common value.

RPC properties are very useful in customizing how RPC works. They can be a
boolean that toggle between options, or a value to set a parameter, or a function
to be called at a particular point.

RPC function declaration
RPC function declarations should be enclosed in the body of the interface
declaration. A function can use any of the types declared previously in the IDL file.
An array argument can use an argument of the same function in its size
expressions. Thus, we can have the following,

interface hello {
 void printmsg(char [size=strlen(msg)+1, 1024] msg);
} 0x12345;

A function argument can be of one of the three directions,
in

The argument is only to be sent to the server. This is the default (when no
direction is specified for an argument).

out

The argument is used only to receive result from server, it must be a
pointer or an array.

inout

The argument is used for both sending and receiving data, it must be a
pointer or an array.

The return type of an RPC function can also be of any type. However, you must
note that for a functions that return a pointer, powerRPC allocates the memory to
which the pointer points, and it is the programmer responsibility to free that
memory using the library function pw_free_reference().

Property definitions
As shown in the previous examples, property definitions come in two places:
immediately enclosed in the “body” of an interface declaration, or inside the
“body” of a function declaration.

 16

The following properties can be defined.

VERSION

An integer value to specified version number for the interface.
The default value is 1.

TRANSPORT_PROTOCOL
The protocol used by client/server for communications. Options are
tcp

A connection-oriented reliable protocol, with exactly once calling
semantics.

udp

A connectionless and unreliable protocol. The client would
retransmit the RPC call if not receive response within a timeout
period. Another restriction is that UDP datagrams usually have a
maximum size of 8K bytes, so it may not be suitable for RPC
functions whose arguments or return value are large.

tcp_and_udp

The server will register with both protocols. The client can choose
either one of them, with the default being TCP.

The default is tcp_and_udp.

SERVER_PORT
An integer value used to specify to the port number of the RPC server. When
this property is not set (the usual case), the server choose an arbitrary port that
is available and the client consults the portmapper on the server host to obtain
the port number. When this set, the client will bypass the portmapper and uses
the port number specified.

NO_PMAP_REGISTER
When this property is set to true, the server will skip registration with the
portmapper. The rpcinfo command won't find your server. You would
normally set this property when you also specified a fixed port.

The default is false.

INIT_BEFORE_REGISTER
A user defined function to be called before server register itself. This
function must be of the type of void (*) (int, char**), it is passed the argc
and argv arguments from the main(int argc, char**argv) function.

No default value for this property.

 17

INIT_AFTER_REGISTER
The user defined function to be called after server register itself. This
function will be passed the argc and argv arguments from the main(int
argc, char**argv) function.

For example, you could use this initialization function to set up signal
handlers, a useful one is to unregister your RPC server with the
portmapper when a SIGINT is received. Using the quote RPC server as an
example, we can write the following functions,

 void handler(int sig)
 {
 quote_1_unmap(0,0);
 exit(0);
 }

 void set_sigint_handler(int argc, char**argv)
 {
 signal(SIGINT, handler);
 }

where quote_1_unmap() is a function generated by powerRPC for the
purpose of unsetting the portmapper entry of the quote server. By setting

 INIT_AFTER_REGISTER = set_sigint_handler;
you make sure that the quote server will remove its entry from the
portmapper's database.

 No default value for this property.

GEN_MAIN_FUNC
When set to false, the powerRPC compiler will not generate the main()
function for the server.
The default is true.

FORK_ON_CONNECTION
When set to true, the RPC server will fork a dedicated server for each
client, all RPCes from the client will be handled by the child. For TCP, the
child is created when a request for connection is received, when the client
detaches from the server, the forked child will exit. The semantics with
UDP transport is different, since UDP is not connection oriented. For
UDP, the server would fork to handle each incoming RPC call. It is
recommended not to use this option with UDP transport, use
FORK_ON_CALL instead.

 The default is false.

FORK_ON_CALL

When set to true for an RPC function, the server will fork a child to
handle the call, so itself can still handle other requests.

 18

The forked child will exit at the completion of the call.
The default is false.

NON_BLOCKING
When this is set to true for an RPC function, the server will reply to the
server immediately, before it actually calls the user implementation of the
function.
Obviously, the return type of such an RPC function should be void and it
should have no out or inout arguments.

TIMEOUT_VALUE
This is an integral value for the RPC timeout in seconds on the client side.
When specified for an RPC function, a timeout error will occur when a
reply for this function is not received within the timeout.
For example, if you set this to be 0 for function foo(), then every call of
foo() will timeout.
The default value is 60.

SERV_CALL_PREFIX
For an RPC function foo() , the powerRPC compiler will generate the
client definition of foo() for you, and you must write the server
implementation of foo() yourself. However, sometimes, you want to make
a program both a server and a client of the same RPC interface. To make
this possible, you must set this property.
For example, when you set

 property SERV_CALL_PREFIX = serv_ ;
PowerRPC expects your sever implementation of foo() to be serv_foo().
This solves the name conflict and you can write a program that is both a
server and also a client (of another server) of the same RPC.

Functions in the generated code
Various functions are generated from your IDL file, occasionally, you may want to
call them in your code directly.

XDR functions

For any data type T used in an RPC function, an XDR function bool_t
xdr_T(XDR* xdrs, T*ptr) is generated when T is not one of the
primitive types. This function takes a pointer to an object of type T as the second

 19

argument, and performs encode, decode or free operation based on the value of
xdrs->x_op.
One possible use of the XDR functions is for serializing data to and from files,
this allows one to save complex data structures in a portable binary format.

Client side functions

CLIENT* <interface>_bind (char*host, u_long pno, u_long vno, char*protocol)
Parameters:

host

the host name of the RPC server

pno

the RPC program number. When this is 0, the one specified in the
interface is used.

vno

the RPC version number. When this is 0, the one specified in the interface
is used.

protocol

``tcp" or ``udp". When this is 0, the one specified in the interface is used.
Return value: On success, it returns a pointer to CLIENT struct. On failure, it
returns NULL.

This function binds the client to the RPC server specified by the parameters. All
subsequent RPC calls go to the specified server. The client application may save
the returned client handle, so it can talk to multiple servers.

void <interface>_bind_handle (CLIENT*pclnt)

Parameters:

pclnt

a valid client handle returned from a previous call to
<interface>_bind().

This function binds the client to a previously bound server. Subsequent RPC calls
go to this server.

void <interface>_unbind (CLIENT* pclnt)

Parameters:

 20

pclnt

a client handle returned from a previous call to <interface>_bind(). If
this is NULL, defaults to the current client handle.

This function unbinds the client to a server.

enum clnt_stat <interface>_errno (CLIENT* pclnt)

Parameters:

pclnt

a client handle returned from a previous call to <interface>_bind(). If this
is NULL, defaults to the current client handle.

This function returns the RPC call status after an RPC has been made. If this is
not RPC_SUCCESS, an error condition has occured.

Server functions

SVCXPRT*

<interface>_<version>_reg(int sock, u_long pno, u_long vno, int protocol)
Parameters:

sock

a bound socket or RPC_ANYSOCK.

pno

the RPC program number. When this is 0, the one specified in the
interface is used.

vno

the RPC version number. When this is 0, the one specified in the interface
is used.

protocol

IPPROTO_TCP or IPPROTO_UDP.
Return value:
A pointer to the server transport. NULL on failure.
This function takes register the <interface> RPC server with the specified
parameters.

void <interface>_<version>_main(int argc, char**argv)

 21

Parameters:
argc

Number of command line arguments.

argv

The array of command line arguments.
This function starts the RPC server. It should never return.

void <interface>_unmap (u_long pno, u_long vno)
Parameters:

pno

the RPC program number. When this is 0, the one specified in the
interface is used.

vno

the RPC version number. When this is 0, the one specified in the interface
is used.

This function undoes the RPC server registration with the portmapper.

Next: PowerRPC library functions
Copyright (C) Netbula LLC, 1996－2005

 22

PowerRPC library
functions

owerRPC comes with a runtime library that provides much of the high
level RPC functionality. Here we list the ones that you may want to know
about.
.

void pw_serv_init(void)
A server must call this function first to do proper initialization of RPC runtime
library.

void pw_serv_mainloop(SVCXPRT*tcpsvc, SVCXPRT*udpsvc,
 int dofork, int exitidle)

Parameters:
tcpsvc

A TCP server transport returned from a call to server register function.

udpsvc

A TCP server transport returned from a call to server register function.

dofork

If true, then the server would fork a dedicated child server for each client.

exitidle

Should always be 1.

This function starts the server. It never returns.

Chapter

4

P

 23

void pw_serv_once(struct timeval *timeout)

Parameters:
timeout

A time out value.
Ask the server which is not started by pw_serv_mainloop() to serve pending RPC
calls. If there is no pending calls, it waits for calls during the time period specified
by timeout parameter.
The call returns after pending calls have been done, or timeout expires.

void pw_serv_async_enable(void)

Enables an asynchronous server. Instead of waiting for requests, the server is
signaled when calls arrive.

void pw_serv_async_disable(void)

Disable the asynchronous server previous enabled.

void pw_free_reference(xdrproc_t xdrfunc, void* ptr, u_int size)

Parameters:
xdrfunc

An XDR function.

ptr

A pointer to memory allocated by the XDR function.

size

The size of the memory block.
Sometime, the underlying RPC mechanism allocates memory, a typical example is
when an RPC function return a pointer. To free this memory, one needs to call
this function. As in the following code segment,

 24

 T * pT;
 pT = foo() ; /* foo() is an RPC */

 ...

 /*free it */
 pw_free_reference(xdr_T, pT, sizeof(*pT);

void pw_serialize(FILE*fp, xdrproc_t xdrfunc, void* pdata, enum xdr_op op)

Parameters:
fp

A opened FILE pointer.

xdrfunc

An XDR function.

pdata

A pointer to data.

op

XDR operation, can be XDR_ENCODE or XDR_DECODE.
This function can be used to serialize/deserialize a C data structure to a file in a
platform independent format. When op is XDR_ENCODE data is serialized to
the file, when op is XDR_DECODE data is read from the file and the data
structure is reconstructed in memory.

Next: Tutorials
Copyright (C) Netbula LLC, 1996－2005

 25

Tutorials

n this chapter, we will go through some sample powerRPC programs.

A file server
In this tutorial, we show you how to write a file server, and then write a client that
understands some simple commands similar to those in FTP, such as GET, PUT,
LS and CD. Since you are completely relieved from the task of writing networking
code by using powerRPC, this assignment become rather trivial - once you get
familiar with how RPC works.

Design of interface
Our file server should provide a set of RPC functions that allow a client to access
files located at the server machine. The server would open the file on client's
behalf, and subsequently, read from or write to the file when such operations are
requested from the client.

It will be convenient to make our RPC functions look like existing file I/O
functions. For example, we could make our RPC interface resembles the UNIX
file I/O system calls, read(), write(), and chdir(), etc. For our demo, let's mimic the
C stdio library functions, such as fread() and fwrite(). To distinguish our RPC
from the C library functions, we prefix our functions with a lower case 'r', so our
RPCes will be rfread(), rfwrite(), etc , we will define a type called rFILE
corresponding to the FILE type. So the rfread() function is of the following
prototype,

 int rfread(void * buf, int size, int nmemb, rFILE* stream);

of course, we should also have a rfopen() function to open a remote file.

Chapter

5
Learn by example I

 26

Assuming an RPC connection has been established, a client could read from a file
"foo" sitting on the server's machine like this,

 rFILE * fp;
 char buf[1024];
 fp = rfopen("foo", "r");
 rfread(buf, 1, 1024, fp);

Having decided the interface functions, we need to decide the transport protocol.
UDP is unreliable and the sizes of datagrams are usually limited to 8K, so let's
choose TCP.

Another decision we need to make is the statefulness of the server. A stateful
server maintains the state for the client, whereas in a stateless server, the client
supplies all the information (such as current file offset) at every RPC. In our demo,
we choose to use a stateful implementation.

The stateful server works as follows. The server maintains a table of opened files,
when the client makes a rfopen() call, the server uses fopen() to open the file and
record the FILE* pointer in the table, the index to that table entry is return to the
client. The client then use the index to reference the file when it makes rfread(),
rfwrite() and rfclose() calls later. Obviously, This index must be a field of our
rFILE structure.

To implement our client program (simple FTP), we also need an RPC to list the
contents of the remote directory. Thus we have the rlistdir() function, which
returns a linked list of directory entries in its argument.

Combining these ideas we come up with the following interface declaration,

typedef char [size=strlen(*this)+1, 1024] str1024;
typedef char c_arr1024 [size=strlen(*this)+1, 1024];
typedef unsigned long size_T;

typedef struct fHandle {
 int fd; // identify the file on server
}rFILE;

typedef struct dentry {
 c_arr1024 name;
 struct dentry *next;
}DENTRY;

interface rfile {
 property TRANSPORT_PROTOCOL= tcp;
 property INIT_BEFORE_REGISTER= init_fdtable;

 rFILE* rfopen(in const str1024 filename,
 in const str1024 mode)
 {
 property TIMEOUT_VALUE = 2;

 27

 };

 int rfread
 (out void [maxsize=size*nm, size=return>0?return:0] ptr,
 size_T size, size_T nm, in rFILE* stream
);
 int rfwrite
 (in const void [maxsize=size*nm, size=nm*size] ptr,
 size_T size, size_T nm, in rFILE* stream);
 int rfclose(rFILE*stream) ;
 int rlistdir(in str1024 path, out DENTRY * pent);
 int rchdir(in str1024 path) ;
} 0x5555 ;

Note that we defined the property INIT_BEFORE_REGISTER, which is the
function to initialize the table of FILE* pointers to 0 on the server.

Server implementation
You need to write the server implementation of the rfopen(), rfread(), etc. The
rfopen() functions merely fopen()s the file, and record the FILE* pointer in the
global fd_table and return the index to the client.

The rfread() function is listed below,

FILE * fd_table[MAXFILE];

int rfread(void *ptr, int size, int nm, rFILE * stream)
{
 FILE *fp;
 int index = stream->fd;

 /* first check if the index is valid,
 if true, get the FILE pointer */
 if (index < 0 || index >= MAXFILE
 || (fp = fd_table[index]) == 0)
 {
 fprintf(stderr, "Invalid rFILE pointer!\n");
 return -1;
 }
 return fread(ptr, size, nm, fp);
}

That is it! The rfwrirte() function is defined by replacing the word read in the
above with write.

The rchdir() function is even simpler.

int rchdir(char *path)
{
 return chdir(path);
}

 28

The rlistdir() function is a bit more complicated, but probaly you can make it
simpler by writing a more elegant linked list.
The client
Now the server code is complete. When it is compiled and executed, it makes the
six RPC functions to be callable from anywhere in a network. A programmer can
make use of these functions and write whatever applications he/she wants. Given
the available RPC functions, we can easily write a file transfer client program
which supports GET, PUT, LS and CD commands.

The get_file() function, which reads a remote file src and saves it in file local, is
listed below,

int get_file(char *src, char *local)
{
 rFILE *fp = 0;
 FILE *localfp;
 char buf[1024];
 int cnt;

 localfp = fopen(local, "w");
 if (!localfp) {
 perror(local);
 return -1;
 }
 fp = rfopen(src, "r");

 if (fp == 0) {
 fprintf(stderr, "Fail to open remote file!\n");
 fclose(localfp);
 return -1;
 }
 while ((cnt = rfread(buf, 1, 1024, fp)) > 0) {
 fwrite(buf, 1, cnt, localfp);
 }

 fclose(localfp);
 rfclose(fp);
 free(fp);
 return 0;
}

The code above is almost exactly what one would do to copy one local file to
another using the fread(), fwrite() functions. The only difference is in the free(fp)

call. PowerRPC always allocates the memory for a return value of reference type,
it is the caller's responsibility to free that memory.

A talk program
In this example, we will write a talk program that allow two users to send
messages to each other.

 29

Design of the interface
A true talk program must have some daemon to notify a user that someone else is
trying to initiate talk with him/her. We can certainly write such as server using
powerRPC, however, this is not the purpose of this demo, since you can already
write such a server after learning the powerRPC from the material above.

Our talk system will be just one program named talk2. One user starts talk2 first,
and another user executes the same program to communicate with the first user,
knowing he/she is there waiting. Talk2 must be both a server and a client of the
same RPC interface, when sending message to the peer, it is a client, when
receiving message, the role is reversed, and it becomes the server.

What we are going to do demands more from both powerRPC and the
programmer.

The talk RPC interface contains a single function: send_msg().

interface talk2 {

 property TRANSPORT_PROTOCOL = udp;
 property GEN_MAIN_FUNC = false;
 property SERV_CALL_PREFIX = s_;

 void send_msg(
 unsigned long sender_program_no,
 char [size = strlen(sender_host) + 1, 1024] sender_host,
 char [size = strlen(sender_name) + 1, 1024] sender_name,
 char [size = strlen(msg) + 1, 4096] msg
) = 1;

} = 0x9999;

The send_msg() RPC takes four arguments, the first three identifies the sender,
the last one is the message being sent. Since talk2 is both a server and a client, we
must define the property SERV_CALL_PREFIX, so the server implementation of
the send_msg is actually named s_send_msg. We also need to write our main()

function, therefore the GEN_MAIN_FUNC property is set to false.

Implementation
Our code for s_send_msg() is just a little more than a few printfs.

void s_send_msg(u_long sno, char *host, char *sender, char *msg)
{
 printf("\n...............%s@%d@%s................\n%s",
 sender, sno, host, msg);
 printf("....................over..................\n");
 talk2_unbind(0);
 talk2_bind(host, sno, 0, 0);
}

 30

Besides writing the message from the client onto the terminal, we also establish an
RPC connection to the sender.

To receive messages from a peer, the Talk2 program needs to be an RPC server,
to send messages it must read stdin and acts as an RPC client. This requires the
Talk2 program to do I/O multiplexing, in our case, the Talk2 program must
handle the input from both the network communication channels for RPCes and
the terminal input. PowerRPC accommodates this easily by providing a set of
server library functions to set up I/O handlers for a particular file descriptor.

Although we could use the INIT_AFTER_REGISTER property to insert all of the
code, we take this chance to write the server main() function ourselves using the
powerRPC generated code and libraries.

Thus we have the following code,

void handle_stdin(int fd)
{
 char msg[1024];
 int cnt;
 cnt = read(fd, msg, 1023);
 if (cnt <= 0)
 exit(1);

 msg[cnt] = '\0';
 send_msg(myprog, myhost, myname, msg);
}

int main(int argc, char **argv)
{
 fd_set fds;
 SVCXPRT *mytxp;
 int serv_sock;
 int dtsz;
 char msg[4096];

 if (argc < 2) {
 printf("Usage: %s -n talker -p “, argv[0]);
 printf(“program# [-c peer -P perr_prog#]\n");
 exit(0);
 }
 getoption(argc, argv);

 gethostname(myhost, 1023);

 if (strlen(peer_host)) {
 if (!talk2_bind(peer_host, peer_no, 0, 0)) {
 printf("Can not find peer to talk.\n");
 exit(1);
 }
 }
 pw_serv_init();

 31

 if (!talk2_1_reg(RPC_ANYSOCK, myprog, 1, IPPROTO_UDP))
 exit(1);

 myprog = myprog == 0 ? TALK : myprog;

 printf("My program number is %d\n", myprog);
 signal(SIGINT, unset_myprog);

 pw_serv_input_handler(0, handle_stdin);

 pw_serv_mainloop(0, 0, 0, 0);
}

As you can the see, the handle_stdin() function simply reads something from stdin
and call the send_msg() RPC to deliver it to a connected peer. The main server
function is more interesting. First, it reads some options. To allow two talk2
programs to sit on the same machine, we let them to use whatever program
number the user gives (if none is given at the command line option then the one
defined in the IDL will be used). The first instance of Talk2 has no one to talk
with, however, a subsequent Talk2 can talk to it by supplying the peer hostname
and program number, through the ``-c" and ``-P" options respectively. When the
peer_host variable is set, we try to make connection to another Talk2. Then we
initialize the server code by calling pw_serv_init() function. Then we register our
server by calling the generated talk2_1_reg() function, with the program number
defined in myprog variable. We then set up the input handler for stdin. Finally,
Talk2 enters its mainloop by calling pw_serv_mainloop() with default arguments.

Usage
The first Talk2 program would be started like this
 % talk2 -n Mike -p 1234
It will announce ``My program number is 1234".

Suppose the first one is on machine host1, we can talk with it by
 %talk2 -n Dave -p 2345 -P 1234 -c host1
Now both Mike and Dave can type in messages on their terminal and talk to each
other.

Our 100 line Talk2 is not intended to be a replacement for the existing talk
program. But you can make it comparable in functionality with talk by writing
more code. How good it can be is only limited by your C/C++ skills, not by your
knowledge of networking or things like that.

 32

Asynchronous RPC
Sometimes, we want an RPC to return immediately, and let the server return the
results to the client asynchronously. For example, if it takes the quote server a
long time to query a database to get the data, we should let the client to continue
to do other things and get the result later when it is ready.

With powerRPC this can be achieved easily. By setting the NON_BLOCKING
property to true, an RPC call would return before the server function gets called.
To receive the result later, the client can register a collection service, which is an
RPC interface. When the server get the result, it calls upon this RPC registered by
the client to send the result back.

In this example, we demonstrate how to make our quote RPC asynchronous. We
have two RPC interfaces defined in back.idl and over.idl. The client main function
looks like this,

#include "over.h"
#include "back.h"
#include <signal.h>
#include <rpc/pmap_clnt.h>

main(int argc, char **argv)
{
 char myhost[1024];
 if (argc < 3) {
 printf("usage: %s hostname ticker\n", argv[0]);
 exit(1);
 }
 pw_serv_init();

 back_1_unmap(0, 0);

 if (!back_1_reg(RPC_ANYSOCK, BACK, BACK_1, IPPROTO_TCP)) {
 printf("fail registering \n");
 exit(0);
 }
 pw_serv_async_enable();

 if (!over_bind(argv[1], 0, 0, 0)) {
 printf("fail connect to OVER server.\n");
 exit(0);
 }
 gethostname(myhost, 1023);
 getQuote(myhost, argv[2]);
 printf("Returned from 1st getQuote... now do something else ..\n");
 getQuote(myhost, argv[2]);
 printf("Returned from 2st getQuote... now do something else ..\n");
 getQuote(myhost, argv[2]);
 printf("Returned from 3rd getQuote... now do something else ..\n");

 while (1) {
 printf("happily doing\n");

 33

 sleep(10);
 }
}

In the above, the client set up an asynchronous RPC back. Then it makes two calls
of getQuote(), both return immediately. This getQuote() call is different from the
one we studied earlier: it has an additional argument myhost. When the server
receives the call, it gets the quote, and calls back myhost to send the results. The
client enters a while loop, pretending to do other work, when the server's callback
arrives, the client will be interrupted, and the returnQuote() implementation is
called. The asynchronous behavior of the client's RPC is enabled by the
pw_serv_async_enable() powerRPC library call .

Below is the server's code.
#include "back.h"
#include <stdlib.h>
/*
This is an asynchronous call. The client sends over its hostname to the
server, the server replies back to the client immediately. Then client
and server reverse their roles, the server makes the RPC returnQuote()
to send the result to the client, which is supposed to acting as a BACK
server waiting for the result.
*/

void getQuote(char *caller_host, char Ticker[8])
{

 stkQuote quote;

 printf("Called by %s\n", caller_host);
 printf("sleep for a while\n");

 sleep(6);

 if (!back_bind(caller_host, 0, 0, 0)) {
 printf("client is not there!\n");
 return;
 }
 strcpy(quote.Ticker, Ticker);

 /* find the quotes */
 quote.Low = rand() % 100;
 quote.High = rand() % 100;
 quote.Close = rand() % 100;
 printf("now sending back quote\n");
 printf("%s %f %f %f\n", quote.Ticker,
 quote.Low, quote.High, quote.Close);

 returnQuote("e);

 back_unbind(0);
}

 34

Other sample programs
The powerRPC distribution conatins other sample programs for demonstration
purposes.

 35

 36

Platform dependent
issues
The powerRPC IDL compiler generates identical source code for all supported
UNIX-like platforms. The generated code for WIN32 only differs slightly. The
powerRPC runtime library encapsulates the platform dependent issues.
PowerRPC is based on top of ONC RPC. On systems (such as SVR4, e.g., Solaris
2.5) which uses TIRPC (TLI networking code), you may need link to additional
libraries such as libsocket and libnsl. On other systems which use the socket based
ONC RPC, no additional libraries need to be linked.

On Windows NT/95/98/ME/2000/XP/2003/X64, one needs to start the
portmapper program, or install the Pmapsvc service (NT/2K/XP/03/X64) only,
which is supplied with the PowerRPC package.

Chapter

6

Index

 2

